首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
化学工业   18篇
能源动力   2篇
轻工业   5篇
一般工业技术   7篇
自动化技术   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有33条查询结果,搜索用时 968 毫秒
1.
2.
Polypeptide was used to improve the water resistance of konjac glucomannan (KGM)-chitosan-based wood adhesives. With identical solid content, the tensile strength in wet state was increased by the addition of polypeptide and a maximum tensile strength of 2.34 MPa was reached. To examine the physical and chemical changes induced by the addition of polypeptide, the structure, viscoelasticity, morphology, and miscibility of the adhesive blends were determined by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, rheometry, and scanning electron microscopy. Results indicated improvements in mechanical properties were related to the formation of intermolecular hydrogen bonds and covalent bonds between KGM, chitosan, and polypeptide, which was enhanced by increasing the polypeptide concentration. Good miscibility existed between KGM, chitosan and polypeptide, as well as good wettability between the adhesive blends and wood veneer.  相似文献   
3.
This study was conducted to determine the effect of both soy protein and glycerol contents on physico-chemical properties of soy protein isolate-based edible (SPI) films. The aim of this study was to better understand the influence of SPI and GLY contents on the behavior of the physico-chemical properties of soy protein isolate-based films. Films were casted from heated (70 °C for 20 min) alkaline (pH 10) aqueous solutions of SPI at 6, 7, 8, and 9 (w/w %), glycerol (50%, w/w, of SPI) and SPI at 7 (w/w %), glycerol (40, 60, 70 %, w/w of SPI). Water vapor permeability (WVP), was measured at 25 °C and for four different relative humidities (30–100%, 30–84%, 30–75%, 30–53%). Surface properties and differential scanning calorimetry were also measured. Varying the proportion of SPI and GLY had an effect on water vapor permeability, wetting and thermal properties of SPI films. A synergistic effect of glycerol and protein was observed on the water vapor permeability. Glycerol and RH gradient strongly enhance the moisture absorption rates and permeability of SPI based films. SPI content weakly increases the WVP and does not modify the surface properties. The temperature of denaturation of soy protein decreases glycerol content except for the higher concentration whereas it increases with protein ratio.Industrial relevanceThis topic of research aims to control mass transfers within composite foods or betweenfoods and surrounding media (for instance the headspace in packagings). The targeted applications from this work deals with the food product coating or the coating of paper-based packaging for limiting both the loss of water and flavors by cheese based products. This will allow to maintain the weight of the cheese during “ripening” and commercialization, and also to prevent (off-) flavour dissemination from very odorant cheese as produced in France and Poland.  相似文献   
4.
5.
In order to effectively apply soybean meal for the preparation of water-resistant soybean-based adhesives for plywood, the effects of three typical soybean meal products, namely, low-temperature soybean meal (LM), high-temperature soybean meal (HM), and physical soybean meal (PM), on the properties of soybean-based adhesive were investigated. The results indicated that the number of reactive groups in the three soybean meals followed the order LM > HM > PM, which in turn led to various crosslinking densities when these soybean meals were crosslinked by epichlorohydrin-modified polyamide (EMPA) during the curing process. The LM soybean adhesive had 6.6% higher soaking bond strength and 16.5% higher boiling-dry-boiling bond strength than the HM soybean adhesive, and 19% higher soaking bond strength and 33% higher boiling-dry-boiling bond strength than the PM soybean adhesive, respectively. These three soybean meals could be used to prepare soybean adhesives for interior-use plywood because all plywood panels bonded with their adhesives passed a water-soaking test at 63 °C for 3 h, but only the LM soybean adhesive achieved the desired water resistance for floor-base plywood. Among the three evaluated soybean meals, LM was the most promising raw material for the preparation of soybean-based adhesive because of a greater number of reactive groups, higher crosslinking density, and superior bond strength. Plywood panel bonded with HM soybean adhesive had a water resistance lower than, but very close to, the standard required value (>0.8 MPa) for floor-base plywood.  相似文献   
6.
Fully renewable soy protein isolate (SPI)–based film with rigid strength and sufficient water resistance is difficult to attain. In this study, the mussel‐inspired surface chemistry of ?‐poly‐L‐lysine (?‐PL)/dopamine was exploited for codeposition onto halloysite nanotubes (HNTs) to engineer a multinetwork of HNT/SPI bionanocomposite films via physicochemical bonds. A series of ?‐PL/dopamine aqueous solutions at different concentration ratios were employed. The ?‐PL with abundant cationic amine groups could prevent the overoxidation of dopamine on HNT surfaces, thus maintaining sufficient free catechol groups for highly active reactions that improve the biphase interfacial adhesion. Moreover, HNTs surface entangled by ?‐PL chains could be more compatible with peptides. This codeposition of ?‐PL/dopamine on HNT (DLHNT) surfaces was analyzed by X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetric analysis. Compared to the control SPI film, the tensile strength of the nanocomposite film (DLHNTs0.5/SPI) was increased from 5.9 MPa to 8.25 MPa, the Young's modulus was improved by 166.4%, and the moisture absorption was reduced to 56.1% (87.2% of the control). In summary, a facile and mild bioinspired surface chemistry of ?‐PL/dopamine codeposition onto HNT surfaces was performed to prepare SPI‐based nanocomposite films with improved interfacial adhesion and benign compatibility. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46197.  相似文献   
7.
8.
The properties of polypropylene (PP) nanocomposites are dependent on the quaternary ammonium salt in the montmorillonite (MMT). A nanocomposite with C-15A, which has a high cation exchange capacity (CEC), exhibits an increase in its impact properties, while one prepared with C-20A, which has a low CEC, shows an increase in the flexural modulus. In order to obtain enhancements in both properties, PP nanocomposites were prepared using a combination of 1:1 of C-15A/C-20A. X-ray, TEM, thermal properties, dynamical mechanical analysis (DMA), and mechanical tests were used to evaluate the properties of this novel mixture. Nanocomposites of partially exfoliated morphology were obtained, especially when 5 wt% of poly(propylene-graft-maleic anhydride) (PP-g-MA) was used. The mechanical tests showed that the use of a 1:1 mixture of C-15A/C-20A caused a simultaneous gain of approximately 12% in flexural modulus and a five times higher impact strength. In addition, the dispersion of the clay was more homogeneous, with the absence of agglomerated structures that were present when either the individual C-15A or C-20A was used. The DMA results showed that while the organoclay improved the modulus of PP, the Tg was decreased slightly.  相似文献   
9.
Mussel-inspired dopamine chemistry is popular among engineers for surface modification on various substrates due to its high efficiency, handy operation process, and strong reactivity. However, the high cost of dopamine does not allow for mass production. In the present study, low-cost dopamine analogues (alkali lignin and tannic acid) were used to fabricate high-reactivity silkworm silk fiber (SF) via a simple dip-coating approach, and were then applied to a soy-based adhesive to enhance its performance. The SF tightly combines with soy protein mainly via a Schiff base reaction between polydopamine or dopamine analogue and the amine or thiol groups of soy protein; this forms a multiple crosslinked system and “reinforced concrete”-like structure, as confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and scanning electron microscopy analyses. As expected, the toughness of the soy-based adhesive obviously improved and the highest wet shear strength of the adhesive samples attained 1.50 MPa, which is far greater than relevant interior use requirements. Though dopamine-coated SF could significantly enhance the wet shear strength of the soy-based adhesive by 387.1% compared to the pristine SM adhesive, lignin-coated and tannic acid-coated SFs are more suitable for practical application due to the lower cost of raw materials. The results of this study may represent an effective and low-cost approach to mussel-inspired surface modification chemistry for the mass production of high-performance soy-based adhesives. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48785.  相似文献   
10.
Thermal and mechanical properties of blends based on high density polyethylene and paraffin wax were investigated. The blends were prepared from 5 to 50 vol. % of paraffin wax employing a twin-screw extruder. Thermal behaviour of samples was determined by differential scanning calorimetry, thermogravimetric and dynamic mechanical analyses. A displacement of melting temperature of polyethylene was detected as a consequence of the plasticization effect of wax. These results revealed that melting temperatures and latent heats of samples are suitable for their application as phase change materials. Blends were processed by injection moulding which is an advantageous method to obtain pieces of this kind of materials. The evolution of loss tangent versus temperature of injected samples showed the lack of miscibility between the components of the blend. Tensile tests were carried out to characterize the mechanical strength of blends. Elongation at break decreased as paraffin wax content increased, and Young's modulus decreased with wax content but in the case of blends with a 30 vol. % of wax and more, brittle rupture occurred and no yield point was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号